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Informational asymmetry between managers and investors in

the optimal capital structure decision

Abstract

In this article, we consider the impact of asymmetric information be-

tween managers and investors on the optimal capital structure decision.

This is done within a continuous-time framework, where the relevant state

variable is given by the EBIT value of the firm; an approach taken by

Goldstein et al. (2001), Hackbarth et al. (2003), Dangl & Zechner (2004)

amongst others. Our setup differs in that we assume the EBIT to follow

an Arithmetic Brownian motion, i.e. it can assume negative values. More

importantly, we extend this framework in two directions: (i) We introduce

a separate management claim. (ii) We introduce asymmetric information

between managers and investors by assuming that claimants receive noisy

signals, which they process according to rational expectation principles.

Our results show, that managers always try to avoid debt, and that their

optimal bankruptcy threshold is always lower, than the threshold set by

equity holders. The introduction of asymmetric information changes the

optimality conditions, and consequently the capital structure decision. It

is shown, that the informational asymmetry can substantially lower the op-

timal leverage ratio, even without assuming that managers are entrenched.

JEL classification: G 32, G 13



Informational asymmetry between managers and investors in

the optimal capital structure decision

1 Introduction

Since Modigliani & Miller (1958), a large number of publications have con-

tributed to the discussion about the optimal capital structure, which is a cen-

tral topic of corporate finance. One fruitful approach has been provided by the

contingent claims analysis, pioneered by Merton (1974), Black & Cox (1976),

Brennan & Schwartz (1978) and Leland (1994). A recent contribution in this

strand of literature has been provided by Goldstein et al. (2001), who take the

EBIT-value of a firm to be the relevant state variable, upon which contingent

claims can be valued. This kind of modelling has the significant advantage that

it avoids the problem of possible arbitrage opportunities, that were inherent in

earlier models that took the state variable to be the unlevered asset value.

In this article, we take up this approach and extend it in mainly two related

directions. On the one hand, we consider agency problems by introducing man-

agement as a separate claim, while on the other hand we introduce asymmetric

information by assuming that investors only have noisy signals about the state

variable.

Considering agency costs in the optimal capital structure literature is definitely

not new, and dates back at least to Jensen & Meckling (1976). An impor-

tant contribution dealing with agency costs in the contingent claims framework

is due to Leland (1998), who considers stockholder-bondholder conflicts, but

excludes the conflicts between managers and investors.1 However, entrenched

managers, who pursue their own interests, can have a significant influence on

leverage decisions. It is argued, that managers use their discretion to implement

a leverage that is too low compared to equity holders optimum.

By allowing managers to have a separate claim on the underlying cash flow, our

model shows how to reproduce this observations in the contingent claims frame-

work. More concretely, it is shown that the value of the management claim is

monotonically decreasing with increasing debt values. Thus, without any coun-

teracting forces, managers always tend to prefer less debt.2 Furthermore, it

1See Leland (1998), p.1215, fn.4
2This seems to be confirmed by empirical findings. See. e.g. Berger et al. (1997), Graham

(2000) or de Jong & Veld (2001).
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is shown, that the endogenously determined bankruptcy thresholds for equity

holders and managers diverge; being significantly lower for the management

claim, which implies that if investors cannot closely monitor, the management

may have an incentive, in the absence of any counteracting forces, to delay

bankruptcy.

The second extension of this contribution is given by the introduction of asym-

metric information between managers and investors. We assume that investors,

i.e. stock and bond holders only receive noisy signals about the EBIT value.

It is further assumed, that investors will rationally process their given infor-

mation, and thus form the best estimate of their observed signals. However,

the fact that equity holders can only rely on estimates about the cash flow

influences the optimality condition for the coupon level and the endogenous

bankruptcy threshold. Not surprisingly, this will impact on the optimal capital

structure decision. It is shown, that the informational asymmetry can account

for a substantially lower leverage ratio.

Literature review

The related literature can be subdivided in broadly two different (but related)

areas: (i) Optimal capital structure models (ii) Models of incomplete informa-

tion and principal-agent conflicts.

Ad (i): Important factors influencing the optimal capital structure decision are

the tax benefits provided by debt issuance on the one hand and the potential

costs of financial distress, namely bankruptcy costs or agency costs on the other

hand. While this has already been noted by Modigliani & Miller (1958), one of

the first papers to make this explicit was Leland (1994). Using the framework

introduced by Merton (1974) and Black & Cox (1976) he shows how optimal

leverage ratios can be derived by considering tax benefits and bankruptcy costs.

His analysis was extended among others by Leland & Toft (1996) who relax the

assumption of infinite life debt, or Leland (1998) to account for asset substi-

tution. However, in these models, the capital structure choice is essentially a

static one, and does not account for the possibility of subsequent debt restruc-

turings.

One of the earliest papers to address dynamic capital structure choices is Kane

et al. (1984, 1985) and notably Fischer et al. (1989), who show that the op-

timal debt ratio of a firm can vary substantially over time. Common to both

approaches - the static and the dynamic one - is the assumption, that the rel-
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evant state variable is given by the (unlevered) firm value3, which is modelled

in the standard way as Geometric Brownian motion.

More recent contributions to this strand of literature, which avoid this as-

sumption include Goldstein et al. (2001), Dangl & Zechner (2004), Ammann &

Genser (2004), Christensen et al. (2000), and Hackbarth et al. (2003)

It is the paper by Goldstein et al. (2001) that first dispenses with the traditional

assumption of the contingent claims analysis4 to take the unlevered assets as

state variable. For reasons to be explained later, they consider the Earnings

Before Interest and Taxes (EBIT) as the state variable, which still is assumed

to follow a Geometric Brownian motion. Within this setting, they consider the

implications of the option to increase future debt levels. Compared to static

capital structure models this implies that debt values decrease because of the

rising bankruptcy level.

In the same spirit, but with another focus Hackbarth et al. (2003) make use

of the EBIT-assumption to address the question of balancing bank and market

debt in an optimal way.

Ad (ii): Besides the above mentioned papers, there exists a large body of lit-

erature that focuses on the impact of principal-agent conflicts and asymmetric

information on the determination of optimal capital structure.5 Jensen & Meck-

ling (1976) are commonly credited as being the first contribution examining the

impact of self-interested managers on capital structure (or ownership structure).

A very recent paper in this direction is Morellec (2004), who uses a framework

similar to Stulz (1990) and shows that managerial discretion can account for

low leverage ratios.

There is also a large body of literature that deals with issues of asymmetric in-

formation and their impact on the financing choice. Pioneering work in this area

is due to Leland & Pyle (1977), Ross (1977), Myers (1977) or Myers & Majluf

(1984).6 Within the class of models, that deals with asymmetric information,

one has to distinguish further, between which parities the informational asym-

metry exists. The contribution by Myers (1977) and Myers & Majluf (1984)

3More precisely, the Fischer et al. (1989) model assumes the unlevered firm value plus its

leverage potential as the state variable. We will come back to this point in a later section
4A notable exception is given by Mella-Barral & Perraudin (1997)
5Obviously, no sharp distinction between the two classes can be drawn, since the disad-

vantage of debt financing in the Leland (1994) framework stems from the bankruptcy costs,

which are a form of agency costs.
6For reviews, see e.g. Stein (2003) or Harris & Raviv (1991).
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looks at informational asymmetries between managers, who act in the best in-

terest of existing equity holders, and outside investors. Within this framework,

they conclude, that there is a pecking order of financing choices. New invest-

ments will be financed first with internal resources, then by debt, and finally

with equity. Subsequent work by Brennan & Kraus (1987) tries to find condi-

tions under which this adverse selection problem may be overcome.

Another natural source of asymmetric information is the manager-investor rela-

tionship, because, while managers can be assumed to have in-depth knowledge

of the firm they are running, this may not be the case for its investors. The

capital structure decision, taken by managers, may then serve as a signalling

device to communicate insider information to outside investors. Early models

within this approach are Leland & Pyle (1977), or Ross (1977).

Most models are static in the sense that they consider some random end-of-

period firm or project value over which insiders are better informed than out-

siders. In this paper we are interested in incorporating manager-investor asym-

metric information in the continuous-time framework introduced in the previous

section.

One notable contribution in this direction was recently made by Duffie & Lando

(2001), who essentially extend the model by Leland & Toft (1996) to incorporate

incomplete information on the part of investors. Being mainly concerned with

the implication on credit spreads, they show that credit spreads in structural

models can become non-negative for very short maturities, which remedies an

important critique on structural credit risk models.

Giesecke (2003) builds upon Duffie & Lando (2001) to extend their analysis to

consider not only incomplete information about the asset value but also imper-

fect information about the default barrier.7

A slightly different approach to incomplete information was provided by Çetin

et al. (2003). They argue that in the Duffie & Lando (2001) model the market

receives a noisy version of the asset value, i.e. the asset value plus a noise com-

ponent added. The markets task is to ’filter’ away the noise in the most efficient

way, to obtain the best estimate of the asset value. This is essentially done by

Bayesian updating. In contrast, in the Çetin et al. (2003) model the markets

information set is not a noisy signal, but a reduced set of the information that

is available to managers, i.e. the market has only a coarse partitioning of the

information set generated by the state variable, which is in their setup the firm’s

7See also Giesecke & Goldberg (2004) and Goldberg (2004)
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cash flows. However, their model remains on an abstract mathematical level

and does not lend itself to direct applications.

The remainder of the paper is organized as follows: Section 2 presents the

general valuation framework, which is applied to the different claims. Section 3

discusses the optimality conditions under complete information, with and with-

out entrenched managers. Section 4 introduces the asymmetric information and

discusses the impact on the capital structure decision. Numerical examples are

shown. Section 5 concludes.

2 The valuation framework

The model set-up is similar to Goldstein et al. (2001) in that we will take the

EBIT value as the state variable. There are mainly two advantages related to

this: On the one hand, it avoids the problem of possible arbitrage opportu-

nities, that were inherent in earlier models that took the state variable to be

the unlevered asset value.8 On the other hand, it allows to treat all claims on

this state variable in a consistent manner. The treatment of the tax claim in

the earlier models was different from the equity and debt claims in that it was

considered an inflow of funds, rather than a reduction in the outflow of funds.9

In contrast to Goldstein et al. (2001) we will not assume the EBIT value to

follow a Geometric Brownian motion, but to follow an Arithmetic Brownian

motion.10 This has the more realistic feature, that cash flows can become neg-

ative, which is by definition not possible with Geometric Brownian motion.

In this section, we give the derivation of the contingent claims analysis11

under complete information, which will serve as the reference case.

As pointed out above, we take the state variable to be the EBIT, denoted by

8It is not possible to assume both the unlevered and the optimally levered assets to be

traded assets, without introducing the possibility of arbitrage. Leland (1994) leaves this issue

unresolved, while Fischer et al. (1989) considered the unlevered asset value plus its optimal

leverage potential as the state variable.
9See Goldstein et al. (2001), p.487.

10Ammann & Genser (2004) also use Artithmetic BM, but since they deal with dynamic

capital structure, they run into difficulties due to the loss of the homogeneity property.
11Brennan (2003) calls it the certainty equivalent approach to valuation.
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X, and assume that it follows an arithmetic Brownian motion

dXt = µPdt+ σ dWP
t (1)

where µP and σ denote the drift and diffusion parameter which are assumed to

be constant. WP is a standard Wiener process. The superscript P emphasizes

that the drift and the Wiener process are governed by the physical probability

measure P .

In following standard arbitrage-free pricing principles, we further assume that

there exists an equivalent risk-neutral probability measure Q, which ensures the

absence of arbitrage. Under the Q-measure, we denote the EBIT-dynamics by

dXt = µ dt+ σ dWt (2)

where µ = µP − θ σ is now the risk-neutral drift, and W is a Q-Wiener process.

θ denotes the endogenously obtained risk premium.

We can also write down the dynamics of an arbitrary claim (C(X)) on the

payout flow by applying Itô’s formula.

dC(Xt) = C(t)dt+ C(x)dX +
1

2
C(xx)(dX)2

=
(

C(t) + µC(x) +
1

2
σ2C(xx)

)

dt+ σC(x)dWt (3)

where the subscripts in parentheses indicate the partial derivatives.

The absence of arbitrage opportunities implies that the total risk-neutral ex-

pected return on the claim has to equal the risk-free rate. If we consider general

claims of the form mX + c, i.e. a claim that receives a fixed amount of c and a

fraction m of the EBIT flow, we get the following relationship

rC dt = EQ[dC + (mX + c) dt]

= EQ[(C(t) + µC(x) +
1

2
σ2C(xx) +mX + c) dt+ σC(x)dWt]

= (C(t) + µC(x) +
1

2
σ2C(xx) +mX + c) dt (4)

From which we get the partial differential equation that has to be fulfilled by

any claim on the EBIT

C(t) +
1

2
σ2C(xx) + µC(x) − rC +mX + c = 0 (5)

In the following, we will only consider claims with no stated maturity, so equa-

tion (5) reduces to an ordinary differential equation (ODE)

1

2
σ2C(xx) + µC(x) − rC +mX + c = 0 (6)
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which has the general solution

C(X) = A1 e
β1X +A2 e

β2X +
mX + c

r
+
µm

r2
(7)

with A1, A2 being constants that have to be determined by appropriate bound-

ary conditions, and β1, β2 are roots of the quadratic equation Q(β) = 1
2σ

2β2 +

µβ − r = 0 which are given by

β1 =
−µ+

√

µ2 + 2σ2r

σ2
β2 =

−µ−
√

µ2 + 2σ2r

σ2

Note, that β1 > 0 and β2 < 0.

At first glance, it is tempting to think of the asset value (V ) associated

with the EBIT flow as the discounted expectation over all future cash flows,

i.e. Vt = EQ[
∫∞
t
e−r(s−t)Xs ds] =

Xt

r
+ µ

r2 . While this is reasonable in the case

when the EBIT flow follows a Geometric Brownian motion12, more caution has

to be applied in the arithmetic case. Here, cash flows can be negative, and at

a sufficiently low EBIT-level it might become optimal to even shut down an

unlevered firm. Therefore, in order to determine the asset value, we have to

take into account the optimal shut down-level, which we denote by XB. If we

consider a claim on the entire payout flow, i.e. m = 1 and c = 0, we derive the

specific solution by determining the constants A1 and A2 of equation (7) by

appropriate boundary conditions. From the fact, that β1 > 0, we immediately

deduce, that A1 = 0 since otherwise the solution diverges. On the other hand,

the claim is worthless at the shut down-level XB, i.e. V (XB) = 0, and so we

find A2 = −(XB

r
+ µ

r2 )e
−β2XB , which gives

V (X) =
(X

r
+

µ

r2

)

−
(XB

r
+

µ

r2

)

eβ2(X−XB) (8)

The first term in the solution coincides with the value of the discounted expec-

tation over all future cash flows (EQ[
∫∞
t
e−r(s−t)Xs ds]); however, due to the

possibility of a shut down we cannot pretend to have an claim on all future

cash flows, but only on those that are realized as long as the EBIT value did

not drop under the shut down level XB.

If we denote by τXB
the first time, that the process X hits the level XB

13

we can interpret V (Xt) as E
Q[
∫ τXB
t e−r(s−t)Xs ds], i.e. the expected discounted

12Cash flows cannot become negative, so “it is never optimal to shut-down an unlevered

firm” (Hackbarth et al. (2003), p.7)
13More precisely, τXB

= inf(t;Xt ≤ XB), which is a so-called stopping time.
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cash flows from t until the stopping time τXB
.

Note further, that the term eβ2(X−XB) can be interpreted as the present value of

one unit of account conditional on the event, that the process X hits the bound-

ary XB. This can be seen by evaluating the expectation E[e−r τXB ] which turns

out to be14

E[e−rτXB ] = eβ2(X−XB) (9)

2.1 All equity case

Now, while V (X) has to be interpreted as the value of a claim on the entire

cash flow, this is a hypothetical case, since even if we consider a firm that is

entirely financed by equity, we must take into account, that not the whole cash

flow accrues to shareholders, but that a substantial part has to be payed to the

tax authority. So, even in the all equity case, we have two claimants: equity

holders and the government.

Therefore, we introduce τ c as the tax rate applying on the corporate level,

and τd and τk as the investor’s personal tax rate on dividends and coupon

payments respectively. Then, the effective part of the cash flow, that goes to

equity holders is m = (1− τ c)(1− τd), and we abbreviate this to m = (1− τ e)
by defining the effective tax rate τ e.

With the same reasoning as above, the general solution for the valuation of the

all equity claim (AE) is AE(X) = A1 e
β1X +A2 e

β2X + (1−τe)X
r

+ (1−τe)µ
r2 .

To simplify notation, make the following definitions

X̂ ≡ X

r
+

µ

r2
X̂B ≡

XB

r
+

µ

r2
(10)

Again, applying A1 = 0 and AE(XB) = 0, we find

AE(X) = (1− τ e)
(

X̂ − X̂B eβ2(X−XB)
)

(11)

Clearly, in this case the claim of the government is simply the remaining part

of the entire cash flow. Denoting the government claim in the all equity case

by TAE(X), this is

TAE(X) = τ e
(

X̂ − X̂B eβ2(X−XB)
)

(12)

14See e.g. Karatzas & Shreve (1998). See Appendix A.1 for more details.
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2.2 Capital structure and management

In this section, we consider a richer setting. On the one hand, staying in the

tradition of the optimal capital structure literature, we analyze the claims on

the cash flow, where we can distinguish four claimants: equity holders, debt

holders, tax authority and bankruptcy costs.

On the other hand, we introduce the management as a separate party, thus

forming the basis to analyze principal-agent conflicts in the sequel. The claim

that is held by the managers is assumed to consist of a fixed payment as well

as a performance-linked compensation, which is given by a part of the cash

flow. Thus management can be viewed as having both an equity- and a debt-

like claim. Furthermore, we assume that managers derive some non-pecuniary

profits from their position.

External equity claim

To determine the equity claim, the cash flow (X) is reduced by the coupon

payment to investors (k) as well as the fixed compensation payments to the

management, which we denote by κ.15 And after effective taxation, the entire

equity claim receives (1− τ e)(X − k − κ).

Furthermore, the entire equity claim is divided up between external equity hold-

ers and managers. If we denote the fraction of the equity claim that goes to the

management by γ, the claim for external equity holders is (1− τ e)(1− γ)(X −
(k+κ)), and the corresponding ODE for the external equity claim (E) is of the

form: 1
2σ

2E(xx) + µE(x) − rE + (1− τ e)(1− γ)(X − (k + κ)) = 0.

In this section, we will consider the endogenous bankruptcy case, which means

that we assume that equity holders can optimally choose the cash flow level

where they will declare bankruptcy. We will denote this endogenous bankruptcy

threshold by Xb.
16

The boundary condition for the equity claim is therefore E(Xb) = 0, i.e. eq-

uity is worthless at the bankruptcy threshold.17 Again, with A1 = 0, we can

15In this context, one should not call X the EBIT, but rather EBITC - earnings before

interest, taxes, and compensation payments. However, with this remark in mind we keep

on calling X the EBIT or simply the ’cash flow’, although this is admittedly not completely

correct.
16The determination of Xb is deferred to a later section.
17While being a standard assumption, in practice, it can be observed that E(Xb) > 0, espe-

cially for firms declaring bankruptcy under the Chapter 11 provisions of the US bankruptcy

law (see Milgrom & Roberts (1992), p.503). For a detailed analysis of the impact of differ-
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determine A2 to be −(1− τ e)(1− γ)
(

X̂b− (k+κ)
r

)

e−β2Xb and so the solution for

equity is

E(X) = (1− τ e)(1− γ)
(

(

X̂ − (k + κ)

r

)

−
(

X̂b −
(k + κ)

r

)

eβ2(X−Xb)
)

(13)

where, again, we defined X̂b ≡ Xb

r
+ µ

r2 .

Debt claim

The debt holders are entitled to the fixed coupon payment (k) as long as the firm

is solvent. So, after accounting for personal taxes, investors receive (1− τ k) k.

Therefore, the ODE for debt is 1
2σ

2D(xx) +µD(x)− rD+(1− τk)k = 0 and the

particular part of the solution is just (1− τ k)k
r
.

In the case of bankruptcy, debt holders receive (part of) the remaining firm

value according to their superior priority. More precisely, we assume, that the

bankruptcy value of the firm is divided up between debt holders, tax authority

and bankruptcy costs. Furthermore, we consider the bankruptcy value of the

firm to be the value of an all equity claim on the cash flow at the bankruptcy

level Xb. This is motivated by the fact, that the former debt holders are effec-

tively the new owners of the EBIT-generating machine, and can thus be viewed

as having an all equity claim on this cash flow.18 Clearly, this claim carries the

potential to optimally lever it again, and the new owners may decide to do so.

However, since this touches on questions of reorganization which are not central

to our analysis at the present stage, we will not pursue this issue further on.

Taking the bankruptcy value to be an all equity claim on the cash flow level

Xb, and introducing α as the fraction, that is lost to bankruptcy costs, the

value that is left to be distributed is (1− α)AE(Xb), which is then distributed

between former debt holders and the tax authority.

For the debt claim we get the following boundary condition at the bankruptcy

level: D(Xb) = (1− τ e)(1− α)AE(Xb).

From this, and from the fact that A1 = 0, we can determine A2 to be
(

D(Xb)−
(1− τk)k

r

)

e−β2Xb , which gives the following solution for the debt claim

D(X) =
(

D(Xb)− (1− τk)
k

r

)

eβ2(X−Xb) + (1− τk)
k

r
(14)

ent bankruptcy procedures on the valuation of corporate securities, see François & Morellec

(2004).
18This is similar to the reasoning by Mello & Parsons (1992), or more recently Morellec

(2004)
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Management claim

Most of the optimal capital structure literature does not distinguish between

management and equity holders. It is assumed that managers act in the best

interest of equity holders, or that equity holders are able to enforce the manage-

ment to do so. Here, we consider managers to be separate stakeholders, who can

act in their own interest, which may not coincide with those of the other parties

involved. In particular, we assume that managers receive a fixed compensation

payment κ and a fraction γ of the cash flow. Furthermore, we assume managers

to derive non-pecuniary benefits from their position. The consideration of non-

pecuniary benefits (sometimes also called ’perquisites’) dates at least back to

Jensen & Meckling (1976), who subsumed such things as reputation, personal

satisfaction or extraordinary perquisites (corporate jet, plush office, etc.) un-

der this notion. In their model and subsequent work,19 non-pecuniary benefits

are important factors, that make managers objectives different from investors

goals.

Here, we will denote these benefits by η. So, in sum the management claim is

(1− τ e)γ(X − (k + κ)) + (1− τ k)κ+ η.

Solving the corresponding ODE, gives the general solution A1e
β1X +A2e

β2X +

(1− τ e)γX̂ − (1−τe)γ(k+κ)−(1−τk)κ−η
r

.

At the bankruptcy threshold, managers not only loose their compensation

payments but also their non-pecuniary benefits associated with their posi-

tion. This gives us the boundary condition M(Xb) = 0.20 We deduce A2 =
(

− (1 − τ e)γX̂b + k̂
)

e−β2Xb . The solution for the management claim is then

found to be

M(X) =
(

− (1− τ e)γX̂b + k̂
)

eβ2(X−Xb) + (1− τ e)γX̂ − k̂ (15)

where k̂ is defined as k̂ ≡ (1−τe)γ(k+κ)−(1−τk)κ−η
r

.

19See e.g. Harris & Raviv (1991), Myers (2003), Bohlin (1997), or Hart (2001) for overview

articles.
20Alternatively, we could assume that managers not only loose their benefits, but also

suffer a punishment (in the spirit of Ross (1977), who introduces a ’bankruptcy penalty’ for

managers (see Ross (1977), p.28)), thus giving a negative boundary value. However, at least

in a qualitative sense the same effect can be achieved by increasing the benefits that are lost

in case of bankruptcy. So, while an explicit punishment is likely to be a slightly more realistic

way of modelling, we do not pursue this here for reasons of parsimony.
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Tax claim

The claim of the government on the EBIT flow consists of three parts. First,

they receive τ e(1−γ)
(

X−(k+κ)
)

from the effective taxation of equity holders.

The second part is the tax income from debt holders which is τ k k, and the third

part is given by the taxation of managers, which have to pay τ eγ
(

X−(k+κ)
)

+

τkκ.

In sum, this provides the tax claim (T ) with τ eX +(τk− τ e)(k+κ) and we get

the following ODE: 1
2σ

2T(xx) + µT(x) − rT + τ eX + (τk − τ e)(k + κ) = 0

The boundary condition at the bankruptcy threshold according to the same

reasoning as above is T (Xb) = τ e(1 − α)AE(Xb), from which we get A2 =
(

T (Xb)− τ eX̂b − (τk − τ e) (k+κ)
r

)

e−β2Xb , and the solution

T (X) =
(

T (Xb)− τ eX̂b − (τk − τ e)
(k + κ)

r

)

eβ2(X−Xb) +

τ eX̂ + (τk − τ e)
(k + κ)

r
(16)

Bankruptcy costs

Finally, we have a fraction of the remaining firm value, that is lost to bankruptcy

costs. This claim vanishes forX À Xb, and is worth αAE(Xb) at the bankruptcy

threshold. The solution to this claim is therefore easily found to be

BC(X) = αAE(Xb)e
β2(X−Xb) (17)

As a consistency check we can sum up the five claims discussed above

(i.e. eqs. (13), (14), (15), (16) and (17)). This sum has to equal the value

of a claim on the entire cash flow (i.e. m = 1) and the non-pecuniary benefits

(η), together with the boundary condition V (Xb) = AE(Xb). Indeed, we get

from both calculations the solution

(

AE(Xb)− X̂b −
η

r

)

eβ2(X−Xb) +
(

X̂ +
η

r

)

A detailed summary of the valuation of the various claims can be found in

appendix A.2.
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3 Capital structure decision under complete infor-

mation

3.1 Optimal bankruptcy threshold

In this section we consider the determination of the optimal bankruptcy thresh-

old of equity holders. The factors influencing their choice are on the one hand,

the fact that the total firm value is maximized by a threshold as low as possi-

ble. On the other hand, the equity value must always be positive and equity

holders won’t accept a situation, where an increase in the cash flow level will

decrease the value of their claim. Therefore, the lowest possible, i.e. the opti-

mal bankruptcy threshold is found by determining the minimum of the equity

value function that is non-negative. This is also known as the smooth-pasting

condition, and ensures that the value of equity is maximized.21

We have to distinguish between the all equity case and the levered equity

case. In the all equity case, the optimality condition is

∂AE(X)

∂X
|X=XB

= 0 subject to AE(X) ≥ 0

while for the levered equity case, we have

∂E(X)

∂X
|X=Xb

= 0 subject to E(X) ≥ 0

Note the difference in the shut down or bankruptcy level.

Solving the above conditions (i.e. differentiating eqs. (11) and (13), evaluating

at XB and Xb respectively, setting them to zero, and solving for X∗
B and X∗

b )

yields for the optimal bankruptcy thresholds22

X∗
B =

1

β2
− µ

r
(18)

X∗
b =

1

β2
− µ

r
+ k + κ (19)

It is immediately obvious that X∗
B < X∗

b , which is reasonable from an economic

interpretation. The bankruptcy level in the levered case is always greater than

the shut down level in the all equity case. Note also, that X∗
B < 0, which indi-

cates that equity holders are willing to keep the firm going even in the case of

a negative EBIT level, but will choose to shut down the business if the EBIT

is sufficiently negative.

21see e.g. Leland (1994), p.1222
22See appendix A.3 for details.
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Another interesting question in this context is where managers would set their

optimal bankruptcy level (Xbm), if they had the corresponding power of deci-

sion. Again, we have to find ∂M(X)
∂X
|X=Xbm

= 0 and solve for X∗
bm, which turns

out to be

X∗
bm =

1

β2
− µ

r
+ k + aκ κ+ aη η (20)

where we have introduced the coefficients

aκ =
γ(1− τ e)− (1− τk)

γ(1− τ e)
aη = − 1

γ(1− τ e)

While it is obvious that aη < 0, it depends on the actual parameter values

which sign aκ will assume. However, since we assume that τ e > τk, i.e. a tax

advantage to fixed payments, we get aκ < 0.

If we consider for a moment the case where managers do not derive non-

pecuniary benefits (i.e. η = 0), we see that X∗
bm is always smaller than X∗

b .

Furthermore, the smaller the equity part of the management compensation,

the lower their X∗
bm. Besides the fixed payment (κ), the non-pecuniary ben-

efits (η) also work towards lowering the optimal bankruptcy threshold. In an

extreme setting, with a very small fixed pay, a small equity part and very high

non-pecuniary benefit, we might even get the case, that X∗
bm is lower than the

all-equity shut down level X∗
B.

This gives us a first interesting result. The mere fact that the management

claim consists of three parts - namely a fixed payment, an equity-like part and

a non-pecuniary benefit - implies a divergence between the goals of external

equity holders and managers concerning the optimal liquidation strategy. Man-

agers would in general choose to file for bankruptcy at a cash flow level that

is too low compared to the optimal threshold for external equity holders, thus

creating a principal-agent problem. In the case of complete information this

might not pose a problem for equity holders, since given their perfect knowl-

edge about the true cash flow level, they can always optimally liquidate the firm.

However, the divergence of optimal liquidation policies already sets the scene

for the principal-agent problems that will occur in the incomplete information

case.

3.2 Optimal coupon without entrenched managers

So far, we have taken the coupon k as being exogenously determined. However,

it is obvious that the coupon level needs to be treated as an endogenous variable
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that determines the optimal capital structure.

We follow the common view (see e.g. Zwiebel (1996) or Novaes (2003)), that

leverage decisions lie within the field of responsibility of managers.

First, to establish the reference case, we assume that managers act in the best

interest of shareholder, i.e. their objective is to maximize shareholder wealth,

and no agency problem occurs. From this, we will find the optimal coupon level

as the solution to the following maximization problem

max
k

(

D(xt, k,X
∗
b (k)) + E(xt, k,X

∗
b (k))

)

(21)

The coupon level is chosen such that the equity value plus the proceeds from

the debt issue are maximized. The debt and equity values are evaluated at the

current EBIT level xt. Further, they depend on the optimal bankruptcy level

(X∗
b (k)) which itself depends on the coupon level k as can be seen from equation

(19). Plugging in the optimal bankruptcy level of external equity holders is

plausible, since in this perfect information case, given any coupon level they

can always choose their corresponding optimal bankruptcy threshold.23

Unfortunately, after plugging in, differentiating equation (21) and setting it to

zero, we cannot explicitly solve for k∗. Therefore, we cannot provide closed-form

solutions for the optimal coupon and must resort to numerical analysis.24

3.3 Optimal coupon with entrenched managers

If managers cannot be forced to implement the equity value-maximizing coupon

level, how would they choose their optimal coupon level? The first-best solution

for managers would be to choose a coupon level that maximizes their claim. In

their optimization problem they have to take account of the fact, that equity

holders can observe the coupon level and adjust their bankruptcy level accord-

ingly. So, in principle the optimal coupon level for management would be found

by k∗ = maxk{M(xt, k,X
∗
b (k))}. If we compute the derivative ∂M

∂k
, we get

∂M(xt, k,X
∗
b (k))

∂k
=
γ(1− τ e)

r

(

eβ2(xt−X∗
b (k))−1

)

+
(

β2
κ(1− τk) + η

r

)

eβ2(xt−X∗
b (k))

Note, that since 0 ≤ eβ2(xt−Xb) ≤ 1 and β2 < 0, both terms are negative so that

we always have M ′(k) < 0 which means that managers always prefer a coupon

23Note, that otherwise we had to treat Xb in the optimization as a constant, which in turn

would yield a different result.
24See appendix A.4 for details.
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level as low as possible. This result shows that in the absence of any coun-

teracting forces, manager will try to avoid debt.25,26 The driving force of this

result is in the present context the fact that managers loose their compensation

payments in the case of bankruptcy so that they can maximize their claim by

minimizing the probability of default, which means taking on less debt.27

The argument taken to the extreme would mean that managers do not is-

sue any debt at all. In a related framework, Noe & Rebello (1996) show that

the first-best policy for managers is an all-equity financing. But obviously this

is unlikely to happen, because equity holders will impose disciplining mecha-

nisms - i.e. corporate government rules and control mechanisms - on managers

to keep them from deviating from their desired optimal capital structure. The

most convincing disciplining force is probably the threat of loosing their job

through dismissal28 or hostile takeover.29 With the threat of being fired, the

second-best solution for managers is then to implement the coupon level which

is optimal for equity holders.

However, for various reasons this threat will often be mitigated. The different

forms of mitigation are subsumed under the notion of ’managerial entrench-

ment’, which - by following Berger et al. (1997) - may be defined as: “the

extent to which managers fail to experience discipline from the full range of

corporate governance and control mechanism”.30

Various forms of entrenchment have been discussed in the literature: A long

tenure in office, a low sensitivity of the compensation scheme to performance

measures, a weak monitoring (e.g. a small board size, few outside directors,

no major stock holders or weak voting powers of equity holders),31 frictions

25This is in line with empirical results obtained by Jung et al. (1996) Berger et al. (1997),

Graham (2000) and de Jong & Veld (2001).
26On the contrary, according to the ’control hypothesis’ (e.g. Jensen (1986)) managers may

choose voluntarily to issue debt because of its credible signal to avoid overinvestment.
27Other motives for the avoidance of debt have been put forward, like the protection of

undiversified human capital (Fama (1980)), or the dislike of performance pressures (Jensen

(1986)). Note, that Grossman & Hart (1982) put forward a different reasoning, by which debt

creates an incentive for managers to work more efficiently, and thus to avoid bankruptcy.
28Huson et al. (2001) find an increased frequency for forced CEO turnover in the period

from 1971 to 1994
29Note however, that Novaes (2003) argues that the takeover threat may not be enough

in general to force managers to implement value-maximizing leverage levels, and depends

crucially on the takeover costs.
30Berger et al. (1997), p.1411
31see e.g. Berger et al. (1997), de Jong & Veld (2001)
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on the market for corporate control32 (e.g. high costs of dismissal), or specific

human capital.33 Given that the managers are entrenched by one or more of

these factors, they can act in their own interest, whereby the extent of the en-

trenchment determines how far they can deviate from equity holders optimum.

Together with the above result, that managers always prefer to avoid debt, the

leverage would ceteris paribus always be lower when managers are entrenched.

As will be shown in a later section, leverage ratios may decline even without

managerial entrenchment (with respect to the leverage decision) if the effects

of asymmetric information are considered.

Before introducing incomplete information, the next section discusses numerical

results in the complete information case.

3.4 Numerical example - Complete information

For illustrative purposes, we present in this section numerical results. Assume

the following base case parameter values: The risk-free interest rate is flat at

5%, i.e. r = 0.05. Corporate taxes are τ c = 0.35, taxes on dividend payments

are τd = 0.2, which gives an effective tax rate of τ e = 0.48. Taxes on coupon

payments are τk = 0.4.34

Empirical evidence (see e.g. Givoly & Hayn (2000)) shows that the cash flow

variability is broadly of the same order of magnitude than its level, so by assum-

ing an initial cash flow level of x0 = 100, we set σ = 100. Further, we assume

a drift of µ = 2.35 Thus, we have µ
r
= 40 and 1

β2
= −296.86. In following

Goldstein et al. (2001), we set bankruptcy costs at 5%, i.e. α = 0.05.36

With respect to parameters influencing the management compensation, we

broadly follow results by Core et al. (1999), Core et al. (2003) and Palia (2001)

and set the equity-linked compensation part to γ = 0.02. Given the initial cash

flow level of x0 = 100, we set the fixed pay to κ = 1 and the non-pecuniary

benefits to η = 0.2

32see e.g. Zwiebel (1996)
33The incumbent manager disposes special skills by which he can add value to the firm, and

which are lost by his dismissal. See Morellec (2004) for a recent model.
34see Goldstein et al. (2001)
35Recall, that µ is the drift under the risk-neutral measure Q.
36This is also in line with results by Weiss (1990)
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Bankruptcy thresholds

Looking first at the optimal bankruptcy thresholds, we obtain the following

values: (i) In the all-equity case, the optimal shut-down level is X∗
B = −336.86.

(ii) In the levered case, the optimal bankruptcy threshold from the viewpoint of

equity holders is X∗
b = −199.11, which turns out to be substantially higher. (iii)

Also not surprisingly, the optimal bankruptcy threshold for the management is

X∗
bm = −276.03, which - as discussed in the previous section - is lower than X∗

b .

With respect to the comparative statics, all three thresholds decrease with an

increasing drift value, i.e. :
∂X∗

B

∂µ
=

∂X∗
b

∂µ
=

∂X∗
bm

∂µ
= −1

r
− 1

β2

√
µ2+2rσ2

< 0

Similarly, an increase in risk also lowers the thresholds:
∂X∗

B

∂σ
=

∂X∗
b

∂σ
=

∂X∗
bm

∂σ
=

− σ√
µ2+2rσ2

< 0. However, in these derivatives k has been treated as a constant.

Now, as it is clear from the preceding section, the optimal coupon k∗ itself

depends, amongst other things, on µ and σ. So, in general it is a priori not

clear if the same signs still hold true. Unfortunately, k∗ is not obtainable in

closed-form, so we can only present numerical solutions. In the left panel of
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Figure 1: Numerical solutions for X∗
b (µ, σ) (solid line), X∗

bm(µ, σ) (dotted line),

X∗
B(µ, σ) (dashed line)

figure 1, the thresholds are shown for increasing µ-values. It can be seen, that

X∗
B is decreasing, which is obvious from the fact that in the all-equity case

there is per definition no coupon payment. On the contrary, for X∗
bm and X∗

b ,

the fact that k∗ itself depends on µ and σ changes their behavior. They only

decrease marginally and can even increase for high µ-values. In the right panel,

thresholds are shown as a function of σ. Although we still can observe different

graphs for X∗
bm and X∗

b , it does not change the sign, so in this case, increasing

the risk unambiguously lowers the three thresholds.
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Figure 2: Comparative statics for the optimal coupon level k∗.

Optimal coupon

We already made use of the optimal coupon k∗ in the preceding section with-

out having discussed its comparative statics. First, we recall, that the optimal

coupon is also depending on the current level of the cash flow X0. By assuming

an initial value of X0 = 100, we obtain in the base case setting k∗ = 136.75.

Varying the different parameters, we obtain comparative static results as shown

in figure 2. The upper three panels show the influence of the asset value process

parameters and the risk-free rate. The middle three panels show the influence

of the tax benefit/bankruptcy cost trade-off, and the lower three panels show

the influence of the management parameter. Interpretations are more or less

straightforward; with the exception of panel 2 (σ), we see monotonic relation-

ships. We observe significant influences for µ, σ, r and the tax rates,37 while

α, γ and κ do only marginally influence the level of k∗ and being independent

of η.

37Note, that the coupon level depends on the difference between the effective taxation and

the tax on coupon payments. When the difference goes down to zero there is no tax benefit

to debt, and thus no incentive to issue debt.
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Claims

Valuing the different claims in the base case setting, we arrive at the following

results at the initial cash flow level X0 = 100:

E(X0) = 1127.56 D(X0) = 1093.55 M(X0) = 33.17

T (X0) = 1809.42 BC(X0) = 5.23 V (X0) = 4068.93

Treating the claims as functions of the cash flow, we get graphs as shown in

figure 3, where the equity, debt and tax claims are shown in the left panel while

the management and bankruptcy claim, which are of a much smaller order of

magnitude, are shown in the right panel. We can observe, that the tax and

equity claim are convex functions of the state variable, with equity smooth

pasting to zero at the boundary X∗
b . The debt claim is concave and approaches

(1−τk)k
r

as x→∞.

With regard to the management claim we observe that at the base case param-

eter values it is a convex function of the cash flow, meaning that ceteris paribus

an increase in risk raises the value of the claim. If the management claim is

convex or concave depends on the proportion of fixed and variable compensa-

tions, i.e. on the values of γ, κ and η. The left panel of figure 4 shows the
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management claim in three different value scenarios, giving a convex, nearly

linear and concave function. The right panel discerns parameter constellations

of γ and κ for which the second derivative (M ′′(X0)) is positive or negative,

respectively. The interpretation is straightforward: A high proportion of fixed

compensation payments makes the management claim more debt-like, while a

high proportion of variable payments makes the claim more equity-like. How-

ever, it is interesting to note that the dividing line (i.e. (γ-κ)-values for which

M ′′ = 0) is nearly linear.38

Leverage

Given the numerical results for debt and equity, we can analyze the compara-

tive static results for the leverage.

In our base case setting we arrive at a leverage - defined as L = D
D+E

- of

L = 0.4923, i.e. 49.23%.

This is significantly lower than in Leland (1994),39 but it is well in line with

results by Goldstein et al. (2001) for their static model. However, empirical

results show that leverage levels in practice are still lower, being around 30%.40

Goldstein et al. (2001) demonstrate that lower leverage levels can be obtained

when the model is extended to a dynamic capital structure setup, while Morel-

lec (2004) tries to explain low leverage levels through the empire building desire

of managers. As we will argue in a later section, low leverage levels can also be

the result of an informational asymmetry between managers and investors.

Figure 5 shows comparative static results for the leverage.

A higher drift rate increases the debt capacity and thus increases the leverage,

which is more pronounced for lower risk levels. This is also reflected in the

upper middle panel, where an increase in risk lowers the leverage (plotted for

different levels of the bankruptcy cost). The dependence on the risk free rate

is partly ambiguous and depends on the drift rate, but overall for reasonable

interest rate levels, the influence on the leverage is rather small. This is also

partly true for the bankruptcy costs, where only unreasonable high α-values do

significantly change the leverage. The most important influence on the lever-

age level comes from the tax advantage. Either if τ e is decreased to approach

38M ′′′(X0) ≈ 0
39An important criticism on the Leland (1994) model was that it could explain observed

leverage levels only by assuming unreasonably high bankruptcy costs.
40See e.g. Eom et al. (2004)
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Figure 5: Comparative statics for the optimal leverage L.

τk = 0.4, or if τk increases to the level of τ e = 0.48 the leverage declines rapidly.

The last parameter shown is γ (lower right panel), and it can be seen that higher

γ-values increase the leverage.41 A higher γ means that a higher share of the

cash flow is going to managers. This leaves the external equity holders with

a smaller part of the cash flow, which gives them an incentive to increase the

value of their claim by taking on more debt.42

Calculating the coupon rate as K = k∗

V (X0) , we arrive at 3.36% in our base

case scenario. This is broadly consistent with results by Goldstein et al. (2001)

as well as with empirical results.43

As a further numerical plausibility check we calculate the recovery rate,

which is given by: R =
D(X∗

b )

D(X0) . We find R = 0.1293, or 12.93% which is low

compared to empirical findings where recovery ratios for unsecured senior debt

varies around 45%.44 However, as has been noted in the previous section, we

41This is in line with empirical results from Mehran (1992) who finds a positive relationship

between leverage and the management compensation tied to performance.
42We do not consider the case when managers own more than 50% of the firm, since other-

wise managers would have the majority of the voting power and would be able to implement

their optimal leverage levels.
43See e.g. Eom et al. (2004)
44Altman et al. (2003) find a mean recovery rate for senior unsecured bonds of 42.3%.

Acharya et al. (2004) and Renault & Scaillet (2004) find a mean of 41.9% and 46.7% re-

spectively, but also show that recovery rates vary significantly in different industries. They

find mean recovery rates of 27.3% and 24.7% respectively for the Telecom industry, while in

Utilities recoveries are on average around 68%.
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assumed the asset value at the bankruptcy threshold to be the value of an all

equity claim on the remaining cash flow generator. In fact, this all equity claim

carries the potential to optimally lever it again, and to be more in line with

a ’realistic’ economic scenario, we would have to calculate the recovery rate

as the ratio of a restructured (i.e. optimally levered) claim at the bankruptcy

threshold to the initial debt value. Taking X∗
b = −199.11 as the new initial

cash flow level X ′
0 we get a new optimal coupon of k′∗ = 33.34 and the value of

the claim on the restructured assets is V ′(X∗
b ) = 539.06. Compared to the all

equity claim at 286.44 this is an increase by the factor of 1.88 and thus the re-

covery rate under the assumption of a restructured claim increases to 24.33%.45

While this is still at the lower boundary for empirical recovery rates, the model

produces values within a reasonable order of magnitude.

Another interesting numerical result produced by the model relates to the

one year probability of default (PD). In the given framework, this amounts to

evaluate the probability that a Brownian motion with drift hits the boundaryXb

from above within a one year time horizon. Applying results from first-passage

theory, we arrive at a PD of 0.00261 or 0.261% in our base case setting.46

A last numerical result relates to equity volatility. Given the cash flow

variability which we assumed to be σ = 100 at X0 = 100 we can calculate the

corresponding equity volatility.47 Clearly, this would imply that all variability

in equity prices is uniquely determined by changes in cash flows.

To determine the annual percentage equity standard deviation, we need to

calculate

√
Var[E(X1)]

E(X0) with Var[E(X1)] = E0[E(X1)
2] − E0[E(X1)]

2. Thereby,

the expectations have to be taken with respect to the probability law of X1,

which is given by the joint distribution of X, i.e. Brownian motion with drift,

and the first-passage time distribution, i.e.

Prob{Xt ∈ dx, inf{Xs; 0 < s ≤ t} ≥ Xb}

In the base case scenario percentage equity standard deviation turns out to be

45More precisely, this value has been derived by assuming that the restructuring can only

take place once, and that the recovery value of the restructured assets are given by an all

equity claim. Therefore, by allowing for multiple restructurings, this would create additional

recovery value. However, the increase is marginal. (With a restructuring at the restructured

bankruptcy threshold the initial recovery rate is 24.89%)
46See appendix A.6 for a derivation.
47See appendix A.5 for details.
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61.24% which is high, but still within a reasonable order of magnitude.

We conclude this section on numerical results by pointing out that while

the model produces results that are broadly plausible, the usual caveat applies,

and it is not our prime interest to formulate a model that closely fits empirical

findings. We are well aware that the model as presented so far still lacks a num-

ber of features that are important factors in real-life capital structure decisions.

Most notably, we consider a static setting while the possibility of changing the

capital structure over time is known to have a significant influence.48 Another

limit is given by the fact that the cash flow dynamics are unaffected by either

capital structure decisions or managerial discretion.49

While these are without doubt important factors, we will focus in the next sec-

tion on another factor which is a significant determinant of capital structure

decisions: the informational asymmetry between managers and investors about

the true cash flow level.

4 Capital structure decision under incomplete infor-

mation

In explaining why the irrelevance hypothesis of Modigliani & Miller (1958) does

not hold, the literature has put forward broadly two classes of arguments. The

first class is based upon agency costs, while the second focuses on informational

asymmetries.50 In this section, we will contribute to the second class in that we

broadly follow the approach taken by Duffie & Lando (2001) who assume that

the incomplete information on the part of investors is given by the fact that

they only receive noisy signals about the relevant state variable. In forming

rational estimates investors are faced with the problem of filtering away this

noise. However, in contrast to considering a one-period problem, we provide

a continuous-time formulation that fits the valuation framework introduced in

the previous section. The solution to continuous-time filtering problems based

upon linear Gaussian processes is given by the so-called Kalman-Bucy filter.

The main idea of this section is to assume that investors, i.e. debt holders as

48See e.g. Goldstein et al. (2001) and references therein
49See Leland (1998) or Ericsson (2000)
50One could also classify the models into explanations based on moral hazard behavior on

the one hand, and adverse selection problems on the other hand. (See Bohlin (1997), p.200)
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well as equity holders only receive noisy signals on which they have to rely

when making their investment decisions. In particular, owners will have to de-

termine their optimal bankruptcy threshold and their optimal coupon decision

upon cash flow estimates. These estimates are made by applying the results of

Kalman-Bucy filtering.

4.1 Impact on the optimal capital structure decision

To make things concrete, recall that the cash flow dynamics are given by dXt =

µ dt + σ dWt. However, investors only observe noisy signals of Xt. Denoting

the observation at time t by Ot they can be assumed to be of the form

Ot = Xt + δwt

where wt denotes white noise (independent ofWt), and δ is a scaling parameter.

To obtain a tractable stochastic integral representation,51 we introduce Zt =
∫ t

0 Os ds and get the observation process

dZt = Xt dt+ δ dVt (22)

where Vt is Brownian motion (independent of Wt).

The general filtering problem is to find the best estimate of the unobservable

system, given the observed signals. In the present model, this means, investors

have to form their best estimate of the cash flow which they cannot observe di-

rectly. Thereby, the notions of ’observations’ and ’best estimate’ need a precise

interpretation. Denoting the estimate of Xt by ξt, saying that ξt is based on

the observations {Zt} means that ξt is Ft-measurable, where Ft is the σ-algebra

generated by {Zs, s ≤ t}. The best estimate is defined to be the optimal mean

square estimate, which satisfies E[|Xt− ξt|2] = inf{E[|Xt−Yt|2];Y ∈ K}, where
K is the set of Ft-measurable functions.

Now, a fundamental result of filtering theory52 establishes that the solution of

the above filtering problem is found by calculating the conditional expectation

E[Xt|Ft]. In the case of linear Gaussian processes, the solution is known as the

Kalman-Bucy filter.

In our context, it can be shown53 that the solution ξt = E[Xt|Ft] of the system

dXt = µ dt+ σ dWt

dZt = Xt dt+ δ dVt

51see Øksendal (2000), p.80
52see Øksendal (2000), or Liptser & Shiryaev (2001)
53See appendix A.7 for the derivation.
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satisfies the following stochastic differential equation

dξt = µ dt+ δ−2St (dZt − ξt dt) (23)

where St = E[(Xt − ξt)
2] is the mean square error which satisfies

dSt = (σ2 − δ−2S2
t ) dt (24)

Obviously, for the initial condition S0 = δσ the solution to (24) is simply

St = δσ (25)

Alternatively, for an initial condition S0 < δσ or S0 > δσ, in both cases St → δσ

as t→∞. So, we will assume that the mean square error started right away in

its ‘steady state’, or - alternatively - that a sufficient amount of time already

elapsed so that (25) can be justified.

Note, that by defining Ut =
∫ t

0
dZs−ξsds

δ
, we can rewrite (23) as

dξt = µ dt+ δ−1St dUt (26)

Thereby, Ut is a standard Wiener process, which is also referred to as innovation

process.54

St provides us with a measure of the (expected) noise that remains after the

observer have formed their best estimates.

In the present context, this informational noise enters the model at two points

(see figure 6).

Xb,ai

t0

xt

t

Xt

Xbm,ai

tx

Figure 6: Informational asymmetry

i. Equity holders-owners will force the firm into bankruptcy when the level

of their cash flow estimate hits their optimal bankruptcy threshold.

54see e.g. Liptser & Shiryaev (2001)
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ii. At the time of the capital structure decision (t0), equity holders-owners

can determine their desired coupon level only based upon their cash flow

estimates (ξ).

(ad i) Default event under asymmetric information

As shown in figure 6, the first role played by the informational asymmetry in

our model is given by the determination of the default event.

Recall, that in the previous section the default triggering event was defined

by the first time the cash flow process hits the bankruptcy threshold. This is

plausible in the case when equity holders can perfectly observe the actual cash

flow process and force the firm into bankruptcy when they consider this to be

optimal. However, under asymmetric information they are only able to decide

upon bankruptcy based on their estimations about the cash flows. Therefore,

we assume the default triggering event to be the first time when the estimation

process ξt hits a bankruptcy threshold under asymmetric information, denoted

by Xb,ai. For the time being, Xb,ai is undetermined and need not yet be the

optimal choice.55

Now, rational investors should anticipate that, conditional on the default

event having taken place, i.e. the estimate hits the threshold, the true cash flow

can be higher or lower than the estimate. If the true cash flow actually turns

out to be higher, the default is not justified and we assume that the bankruptcy

procedure is stopped and the firm continues to operate as before. On the other

hand, the actual cash flow may turn out to be lower than estimated. This

presupposes that managers have an incentive to keep quiet about the fact that

the true cash flow level already dropped below the bankruptcy threshold, i.e. to

delay bankruptcy filing. Indeed, since the optimal bankruptcy threshold for the

management is always lower than for equity holders, as discussed in the previous

section, they do have this incentive. Ignoring any other factors, and given that

equity holders haven’t yet claimed bankruptcy, managers will delay bankruptcy

filing until the true cash flow hits their optimal bankruptcy threshold (X∗
bm,ai).

With respect to the decision about filing for bankruptcy, the informational

asymmetry provides the manager with a form of entrenchment, which they can

exploit for their self-interest.

This managerial discretion is harmful to the owners because bankruptcy does

not occur at their desired optimal cash flow level, but is delayed to a lower,

55Therefore, it is not distinguished by a star.
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suboptimal level. It is also harmful to debt holders since in the case when

the true cash flow is lower than estimated and bankruptcy is declared the firm

is liquidated and the former debt holders receive an all equity claim on the

remaining (diminished) cash flows. Clearly, this makes the debt claim more

risky and thus less valuable. In valuing the debt claim ex ante, investors have

to rationally anticipate the managerial self-interest. I.e. investors have to take

into account that managers will not file for bankruptcy at their optimal cash

flow level, and that the liquidation value may correspondingly be based on a

cash flow level that is lower than Xb,ai.

If we call the amount by which the cash flow is lower the informational

shortfall, and denote it by S ≤ 0, then we can introduce XS as the diminished

liquidation cash flow given by

XS = Xb,ai + S

The shortfall S itself consists of two parts: (i) As long as the actual cash flow

is smaller than Xb,ai but higher than Xbm,ai which is the bankruptcy threshold

under asymmetric information chosen by managers, the management has an

incentive to delay bankruptcy filing as discussed above. Therefore, the first

part consists of the expectation taken over the interval (Xbm,ai, Xb,ai), which

we can write as E[(X −Xb,ai) 1{Xbm,ai<X<Xb,ai}]. (ii) On the other hand, with

the remaining probability that the actual cash flow is smaller than Xbm,ai,

i.e. Prob(X ≤ Xbm,ai), investors will get Xbm,ai, because managers have an

endogenous motivation to file for bankruptcy since their optimal bankruptcy

threshold has been hit. This can be written as E[(Xbm,ai−Xb,ai) 1{−∞<X<Xbm,ai}].

Taken together, the shortfall S can be written as

S =

∫ Xb,ai

Xbm,ai

(y −Xb,ai)φ(y) dy +

∫ Xbm,ai

−∞
(Xbm,ai −Xb,ai)φ(y) dy (27)

where φ(·) denotes the probability density function of the normal distribution

with mean Xb,ai and standard deviation
√
δσ, i.e. N (Xb,ai,

√
δσ).

The N (Xb,ai,
√
δσ) distribution is justified since we have E[Xt|ξt = Xb,ai] =

Xb,ai. Therefore, conditional on the bankruptcy event, which is given by ξt =

Xb,ai, the mean of the true cash flow is given by Xb,ai. Furthermore, conditional

on default, we have a variance of Var[Xt] = E[X2
t ]−E[Xt]

2 = E[(Xt−E[Xt])
2] =

E[(Xt − ξt)2] = St = δσ. The normal distribution is obvious from the fact that
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the estimation process is driven by a Brownian motion.

This was illustrated in figure 6 as the distribution around the bankruptcy event

at time τξ.

Note again, that the thresholds Xb,ai, Xbm,ai and XS are not yet determined;

an issue we will turn to in the next section.

(ad ii) Capital structure decision with incomplete information

Although, there is an informational asymmetry between managers and investors

with regard to the true cash flow level, we assume no such asymmetry with re-

spect to the capital structure, i.e. the amount of debt issued. Therefore, equity

holders can observe the leverage ratio and enforce the management to imple-

ment their optimal debt level. In other words, we assume that managers do not

enjoy any form of entrenchment with regard to the decision about the coupon

level. As discussed in an earlier section, given that managers are entrenched,

they will always have an incentive to lower the leverage ratio.

However, even without managerial entrenchment the informational asymmetry

plays an important role in determining the optimal coupon to be issued since

equity holders can now base their optimization problem only on their noisy

estimates about the true cash flows.

In the first, but incomplete attempt to determine the optimal threshold for

owners under asymmetric information, we can follow the same reasoning as in

the previous section. Equity holders will determine the optimal (endogenous)

bankruptcy threshold by maximizing their claim. However, this will differ from

the previous X∗
b because it will be based upon the estimate ξt. Therefore, we

write the smooth-pasting condition as follows

∂E[E(ξ)]

∂X
|X=Xb,ai

= 0 X∗
b,ai =

e−
1
2
β2
2δσ

β2
− µ

r
+ k + κ (28)

Instead of differentiating the equity claim based upon the true cash flow, the

optimality condition now involves the expected equity value based upon the

estimated cash flow, i.e. the smooth-pasting condition refers to the expected

equity value.56

This optimality condition assumes that equity holders only decide upon ex-

pected values, i.e. that they are risk-neutral with respect to the informational

56See appendix A.8 for a derivation.

29



asymmetry. Extending the optimality condition to account for risk averse be-

havior would mean introducing an additional utility function and the corre-

sponding risk aversion parameters. With regard to the effects of risk aversion,

we expect them to work in the same direction and to even aggravate the results

under risk neutrality. Therefore, at this stage of the analysis we assume risk

neutrality, and leave the incorporation of risk aversion for future research.

We can see from (28) that the solution to X∗
b,ai has the same form as before

(see eq. (19)), but that it differs in the numerator of the first term, where we

have e−
1
2
β2
2δσ instead of 1. Since the exponent is always negative for δ > 0, this

term is always smaller than one which implies that X∗
b,ai > X∗

b , i.e. the optimal

bankruptcy threshold under asymmetric information is ceteris paribus always

higher than under complete information.57 However, this inequality holds only

under the ceteris paribus condition since, as shown in the next section, the in-

formational asymmetry will impact on the optimal debt level which no longer

guarantees the above inequality. In fact, since the optimal coupon under asym-

metric information will be smaller, this might actually reverse the inequality.

Contrary to the complete information case, this is however not the end of the

story. If equity holders took X∗
b,ai to be their optimal threshold, they would

ignore the important reasoning from the previous section, namely that man-

agers have an incentive to delay the bankruptcy filing which means that on

average, bankruptcy filing occurs too late for investors. Therefore, let us call

X∗
b,ai the naive optimal threshold. In determining their ’sophisticated’ optimal

bankruptcy threshold, equity holders have to take the managerial self-interest

and entrenchment into account.

As discussed above, they know that on average the bankruptcy threshold is

diminished by the shortfall S so that the actual bankruptcy threshold is given

by XS = Xb,ai + S. So, they have to choose Xb,ai such that XS equals X∗
b,ai,

i.e. such that the diminished threshold equals their naive optimal threshold.

This implies that the sophisticated threshold, which we will denote by X∗∗
b,ai,

should be increased by the shortfall S, i.e.

X∗∗
b,ai = X∗

b,ai − S =
e−

1
2
β2
2δσ

β2
− µ

r
+ k + κ− S (29)

For the management the optimal bankruptcy threshold is still given by (20),

since they have complete information, i.e. they still can determine their opti-

mal threshold based upon the true cash flow. However, given that the optimal

57Note, that for δ = 0 (no noise), e−
1
2
β2
2δσ = 1 and we have the same solution as in (19)
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coupon issued is affected by the asymmetric information as discussed in the

next section, we obtain X∗
bm,ai = X∗

bm(k∗ai).

In going back to equation (27), and after plugging in the optimal solutions for

Xb,ai and Xbm,ai, we see that S appears on both sides of the equation, but

due to the fact, that the integral representation has no closed-form solution we

cannot analytically solve for S. However, numerical solutions can be obtained

and will be presented in the next section.

Given the optimal threshold which, as before, can be interpreted as being a

function of the coupon level: X∗∗
b,ai(k), equity holders will maximize the sum of

the ex post equity claim and the proceeds of the debt issue, i.e. if we denote the

optimal coupon issued under asymmetric information by k∗ai, the optimization

problem is given by

k∗ai = max
k

(

E[D(ξt, k,X
∗∗
b,ai(k)) + E(ξt, k,X

∗∗
b,ai(k))]

)

(30)

Note, that in (30) the claims are now evaluated at the current estimate of

the cash flow ξt. Furthermore, since the estimates are known to be random

variables, equity holders care only about the expected values of the claims.58

As in the previous section, the solution to this optimization problem has no

closed form, and we can only provide numerical examples in a later section.59

4.2 Numerical example - Asymmetric information

Bankruptcy thresholds, Informational shortfall and Optimal coupon

With the same base case parameters as in the previous section on complete in-

formation, we present numerical solutions for the bankruptcy thresholds X∗∗
bm,ai

and X∗
b,ai, for the informational shortfall S and for the optimal coupon k∗ai.

Thereby, three different scenarios for the volatility of the underlying process

(σ) are plotted: Solid line: σ = 100, dotted line: σ = 50, dashed line: σ = 150.

(see figure 7)

In the upper left panel of figure 7 the dependence of the informational short-

fall S on the amount of noise, represented by δ, is shown. As expected, the

higher the informational noise, the higher is the possibility for managers to de-

lay bankruptcy filing, and thus the higher (in absolute terms) is our measure for

58The same remark made above with respect to risk-neutrality applies again.
59See appendix A.9 for more details.
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Figure 7: Bankruptcy thresholds, informational shortfall and optimal coupon

under asymmetric information. (solid line: σ = 100, dotted line: σ = 50,

dashed line: σ = 150)

this. Comparing the three graphs, it can be seen that the higher the volatility

of the underlying cash flow process, the higher is c.p. the shortfall. Obviously,

for δ = 0, we have the complete information case, and thus the shortfall is zero.

Taking δ = 50 as our base case value for the noise, we obtain for the shortfall

S = −25.9.
The influence of noise on the optimal coupon k∗ai is plotted in the upper right

panel, and it can be observed that we have a decreasing relationship. Higher

noise means that equity holders will want to issue less debt. Comparing the

three graphs, we recognize the relationship already discussed in figure 2 that

higher volatility increases the debt level. For δ = 50 we find a coupon of

k∗ai = 104.32

In the lower left panel the influence of noise on the optimal bankruptcy thresh-

old for owners is displayed, and all three graphs appear nearly constant at

significantly different levels. In the base case scenario we find X∗∗
b,ai = −197.33.

The apparent independence can be explained by the fact that the threshold is

among others influenced by the shortfall S and the coupon k∗ai which becomes

obvious from equation (29). Since the two factors have the same dependence on

noise, but enter with different signs in (29), they nearly cancel out each other.

Given a fixed coupon, we have the unambiguous result, that noise always in-
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creases the bankruptcy threshold.60

The last panel (bottom-right) shows the optimal bankruptcy threshold chosen

by managers, and we see a decreasing relationship. For higher noise levels, man-

agers have a lower optimal threshold. The base case value is: X∗
bm,ai = −308.46

For all three parameters it can be verified, that for δ = 0, we get the results

already obtained in the numerical examples under complete information.

Valuation of the claims under asymmetric information

In valuing the different claims under asymmetric information, we now have to

take into account that essentially three parameters have changed: (1) The op-

timal coupon issued, is now k∗ai. (2) The endogenous bankruptcy threshold of

the equity holders is X∗∗
b,ai. (3) The liquidation value is given by an all equity

claim on the cash flow at the above bankruptcy threshold: AE(X∗∗
b,ai).

These changes have to be taken into account in equations (13) - (17).
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Figure 8: Valuation of the claims under asymmetric information (dotted line;

δ = 50) and under complete information (solid line).

The resulting graphs for the debt, equity, management and bankruptcy

claim are shown in figure 8 as the dotted lines, where a noise level of δ = 50

is chosen. The solid lines are the graphs for the corresponding claims under

complete information.

The left panel of figure 8 shows the equity (convex) and debt claim (concave

graph). Although one should be careful in comparing the claims under complete

and incomplete information, since both are under the given conditions optima,

it can be observed that debt looses value, while the equity claim increases.

60This can be seen from equation (29): A higher δ lowers the numerator in the first term,

which is negative, and lowers S which enters with a minus sign.
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This might be attributable to the fact that, although owners do suffer from the

informational asymmetry as well, they are still able to optimally choose the

bankruptcy threshold and the amount of debt to be issued.

In the right panel the graphs for the management and bankruptcy claims are

plotted, and again, applying the same caution, we can observe that the man-

agement claim increases in value which was to be expected since they dispose

of the complete information about the true cash flow.

Leverage ratio under asymmetric information

For our purposes, the most interesting influence of the informational asymme-

try may be given by the change in the leverage ratio since this documents in

how far the capital structure decision is dependent on informational asymme-

tries between management and investors. Figure 9 shows numerical results for

the dependence of the leverage ratio (L) on the amount of noise (δ), displayed

again for three different scenarios for the volatility of the underlying cash flow

process: Solid line: σ = 100, dotted line: σ = 50, dashed line: σ = 150.

First, observe that with no noise (δ = 0) we obtain the leverage ratio already
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Figure 9: Leverage ratio under asymmetric information (Solid line: σ = 100,

dotted line: σ = 50, dashed line: σ = 150).

known from the previous section where we treated the complete information

case, i.e. L = 0.492. Furthermore, again without noise, the leverage decreases

(increases) for a higher (lower) volatility of the cash flow process, as discussed

and shown in figure 5.
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L δ = 0 δ = 20 δ = 50 δ = 80 δ = 120

σ = 100 0.492 0.4307 0.3873 0.3537 0.3148

σ = 50 0.5251 0.4501 0.3872 0.335 0.2729

σ = 150 0.4813 0.4292 0.3963 0.3716 0.3435

Table 1: Numerical leverage ratios.

Now, if the noise increases, we can observe from figure 9 that the leverage ra-

tio starts to decline rapidly. Table 1 presents leverage ratios for selected noise

levels.

The decline in the leverage ratio is significantly more pronounced for a lower

volatility of the cash flow process. For our base case scenario (i.e. σ = 100,

δ = 50) we have a decline in the leverage ratio from 49.2% down to 38.7%

which is a decrease of roughly 20%. For a volatility of σ = 50 and high noise

levels (δ = 120) we can even observe that the leverage ratio drops by nearly

50%!

Thus, we conclude that noise can significantly impact on the optimal leverage

ratio, and decrease it substantially.

As mentioned earlier, empirical leverage ratios vary on average around 30%.61

The incorporation of informational asymmetry in our setup is able to produce

results consistent with these empirical findings.

Another interesting finding is that the impact of a change in the cash flow

volatility on the leverage ratio is reversed for high noise levels. While a nega-

tive relation can be observed for noise levels up to around δ = 50, we get the

reverse influence beyond this level. This is further illustrated in the left panel

of figure 10 where the dependence of L on σ is plotted for tree different noise

levels (Solid line: δ = 50, dotted line: δ = 20, dashed line: δ = 120).

The right panel of figure 10 shows the dependence of the leverage ratio on

the initial cash flow. The optimal coupon decision, and therefore the capital

structure decision depends on the initial cash flow level which we assumed to be

X0 = 100 in the complete information case. In the incomplete information case

the coupon and capital structure decision made by owners is now based upon

their estimate about the cash flow ξ0. With respect to the previous results in

this section we assumed that equity holders have an initial estimate of ξ0 = 100

61See e.g. Eom et al. (2004). However, it has to be stressed, that leverage ratios can heavily

differ among individual corporations.
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Figure 10: Leverage ratio under asymmetric information - Dependence on σ

(left panel) and ξ0 (right panel). (Solid line: δ = 50, dotted line: δ = 20,

dashed line: δ = 120).

(Clearly, without knowing that their estimate happens to be the true value).

This assumption was made to make the results under asymmetric information

comparable to complete information results.

The dependence shown in the right panel is straight-forward: For any noise

level, the higher the initial estimate with respect to the true cash flow level the

higher will be ceteris paribus the corresponding leverage ratio, whereby this

relationship is more pronounced for high noise levels.

L δ = 0 δ = 20 δ = 50 δ = 80 δ = 120

recovery rate 0.1293 0.1531 0.1714 0.1873 0.2086

coupon rate 0.0336 0.0289 0.0256 0.0231 0.0202

Table 2: Numerical recovery and coupon rates.

Looking at the impact of noise on recovery and coupon rates (see Table 2),

we observe that the recovery rates, defined as Rai =
D(X∗∗

b,ai
)

D(X0) , increases which

is due to the fact that while the debt value at the bankruptcy threshold is

only slightly affected, it is significantly decreased at the current cash flow level

(compare figure 8). Thus, the denominator decreases, making the ratio higher.

Compared to empirical recovery rates,62 the model with noise produces more

realistic values.

With respect to the coupon rate (Kai =
k∗ai

V (X0)) it can be seen from table 2 that

it decreases with higher noise which was to be expected from the fact that the

optimal coupon decreases under noise (compare figure 7).

62See the references cited in footnote 44.
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5 Conclusion

This paper deals with the impact of asymmetric information on the optimal

capital structure decision. This is done within a framework similar to those

proposed by Goldstein et al. (2001), Dangl & Zechner (2004) or Christensen

et al. (2000), who take the state variable to be the EBIT value of a firm. In

these papers, the cash flow dynamics are modelled as Geometric Brownian mo-

tion, which implies that cash flows never become negative. In contrast, in our

setup, we assume the cash flow to follow an Arithmetic Brownian motion, which

allows for negative values. In fact, as the numerical example shows, the endoge-

nously obtained optimal bankruptcy threshold of equity holders will typically

be negative, i.e. owners will tolerate negative cash flows as long as growth per-

spectives can outweigh the losses.

We further extend the above mentioned models by introducing managers as

having a separate claim on the cash flow. By assuming that their claim consists

of a performance-linked compensation and a fixed pay as well as non-pecuniary

benefits it is shown that the optimal bankruptcy threshold chosen by managers

is always lower than that chosen by equity holders. For the optimal coupon

chosen by managers we find that they would always prefer a coupon as low as

possible. This tendency to avoid debt is consistent with empirical findings.63

The discretionary freedom to follow self-interested goals depends on the degree

of entrenchment with which managers are endowed.

While being instructive, the introduction of a management claim was not a goal

per se, but served as prerequisite to model informational asymmetries between

managers and investors. Equity holders as well as debt holders were assumed

to have only incomplete information with respect to the underlying cash flow

process. They receive noisy signals about the EBIT and in rationally process-

ing this information, they form their best estimates through Bayesian updating.

Within the continuous-time framework this is done by applying Kalman-Bucy

filtering results.

Thereby, the informational asymmetry enters the model at two points. On the

one hand, investors must take into account that their estimate may overesti-

mate the actual cash flow which may actually be already below their optimal

bankruptcy threshold. This follows from the fact that self-interested managers

do have an incentive to delay bankruptcy filing as long as their own optimal

63See the references in footnote 25.
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threshold hasn’t been hit. With respect to the decision to file for bankruptcy,

the informational asymmetry does provide managers with a form of entrench-

ment. On the other hand, at the time of deciding over the optimal coupon,

equity holders can base their decision only on their cash flow estimates. There-

fore, their optimization problem involves expected values instead of realized

values.

Taken together, the informational asymmetry works towards lowering the coupon

to be issued, while keeping the endogenous bankruptcy threshold of owners

nearly constant. More interestingly, it is shown that the leverage ratio can de-

cline substantially if the informational asymmetry (i.e. the noise component) is

increased. The decline being even more pronounced for a low volatility in the

underlying cash flow process.

It has to be stressed, that this result follows even without assuming that man-

agers do enjoy any entrenchment with respect to the coupon decision.64 If

managers were endowed with additional entrenchment, leverage ratios should

be even lower.

Finally, some remarks on the limits of the model are in order. The capital

structure decision considered here is a static one, i.e. we haven’t considered

the impact of the possibility to change the leverage in the future. Results by

dynamic capital structure models indicate that this additional option works to-

wards lowering the initial leverage ratio. A second limit concerns the possibility

of asset substitution. Managers in our model cannot exert any influence on the

dynamics of the underlying cash flow process. And as a last limit one should

be aware that we haven’t considered the impact of bond covenants or more

generally of exogenously determined bankruptcy thresholds. These three issues

are the subject of further research.

However, subject to the limits just mentioned, the model shows that, even

without an explicit entrenchment of managers, the informational asymmetry

can lead to substantially lower leverage ratios.

64This means, we assume that owners have the possibility to force managers to implement

their optimal coupon level since the coupon decision is observable. However, owners cannot

force managers to follow their optimal liquidation policy since they cannot observe the true

cash flow. This provides managers with an entrenchment with respect to the bankruptcy

decision as mentioned above.
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A Appendix

A.1 Laplace transform of the hitting time

Denote τ as the first time a Brownian motion with drift ν hits or exceeds the level

y ≥ 0, i.e.

τ = inf{t ≥ 0;Wt + νt ≥ y}

The transformation formula for E[e−r τ ] is then given by

E[e−r τ ] = exp{νy − y
√

ν2 + 2r} (A-1)

(See Karatzas & Shreve (1998), p.63)

We apply this result to the case, where τXB
denotes the first time the process Xt

hits or falls below XB , i.e.

τXB
= inf{t ≥ 0;Xt ≤ XB}

Thereby, Xt is assumed to follow an Arithmetic Brownian motion. So, we have Xt =

X0 + µt+ σWt, and we can write

τXB
= inf{t ≥ 0;X0 + µt+ σWt ≤ XB}

= inf
{

t ≥ 0;Wt −
(µ

σ

)

≥ X0 −XB

σ

}

In order to apply the transformation formula (A-1), we identify ν = − µ
σ
and y =

X0−XB

σ
, from which we get

E[e−r τXB ] = exp
{

− µ

σ2
(X0 −XB)−

X0 −XB

σ

√

(µ

σ

)2

+ 2r
}

= exp
{(

− µ

σ2
−
√

µ2 + 2σ2r

σ2

)

(X0 −XB)
}

= exp{β2(X0 −XB)} (A-2)

A.2 Valuation of the various claims

The general solution to the ordinary differential equation

1

2
σ2C(xx) + µC(x) − rC +mX + c = 0

has the form

C(X) = A1 e
β1X +A2 e

β2X +
mX + c

r
+
µm

r2

with

β1 =
−µ+

√

µ2 + 2σ2r

σ2
β2 =

−µ−
√

µ2 + 2σ2r

σ2

As mentioned in the text, we will use the following shortcuts to ease notation

X̂ ≡ X

r
+

µ

r2
X̂B ≡

XB

r
+

µ

r2
X̂b ≡

Xb

r
+

µ

r2
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All equity claim AE(X)

For the all equity claim we have

m = (1− τ e) c = 0

Therefore, AE(X) has to satisfy the ODE

1

2
σ2AE(xx) + µAE(x) − rAE + (1− τ e)X = 0

which has the solution

AE(X) = A1 e
β1X +A2 e

β2X +
(1− τ e)X

r
+
(1− τ e)µ

r2

To determine the coefficients, for X À XB we deduce that A1 = 0, since otherwise the

solution diverges.

On the other hand we have AE(XB) = 0, from which we can deduce A2

AE(XB) = A2 e
β2XB +

(1− τ e)XB

r
+
(1− τ e)µ

r2
= 0

⇔ A2 e
β2XB + (1− τ e)X̂B = 0

⇔ A2 = −(1− τ e)X̂B e−β2XB

Therefore, we have the solution

AE(X) = (1− τ e)
(

X̂ − X̂B eβ2(X−XB)
)

(A-3)

External equity claim E(X)

For the equity claim in the levered case, we have

m = (1− τ e)(1− γ) c = −(1− τ e)(1− γ)(k + κ)

Therefore, E(X) has to satisfy the ODE

1

2
σ2E(xx) + µE(x) − rE + (1− τ e)(1− γ)X − (1− τ e)(1− γ)(k + κ) = 0

which has the solution

E(X) = A1 e
β1X+A2 e

β2X+
(1− τ e)(1− γ)X − (1− τ e)(1− γ)(k + κ)

r
+
(1− τ e)(1− γ)µ

r2

To determine the coefficients, for X À Xb we deduce that A1 = 0, since otherwise

the solution diverges.

On the other hand we have E(Xb) = 0, from which we can deduce A2

E(Xb) = A2 e
β2Xb + (1− τ e)(1− γ)

(Xb

r
+

µ

r2
− k + κ

r

)

= 0

⇔ A2 e
β2Xb + (1− τ e)(1− γ)

(

X̂b −
k + κ

r

)

= 0

⇔ A2 = −(1− τ e)(1− γ)
(

X̂b −
k + κ

r

)

e−β2Xb

Therefore, we have the solution

E(X) = (1− τ e)(1− γ)
(

(

X̂ − (k + κ)

r

)

−
(

X̂b −
(k + κ)

r

)

eβ2(X−Xb)
)

(A-4)
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Debt claim D(X)

For the debt claim, we have

m = 0 c = (1− τk)k

Therefore, D(X) has to satisfy the ODE

1

2
σ2D(xx) + µD(x) − rD + (1− τk)k = 0

which has the solution

D(X) = A1 e
β1X +A2 e

β2X + (1− τk)
k

r

To determine the coefficients, for X À Xb we deduce that A1 = 0, since otherwise

the solution diverges.

On the other hand we have D(Xb) = (1−τ e)(1−α)AE(Xb), from which we can deduce

A2

D(Xb) = A2 e
β2Xb +

(1− τk)k

r
= (1− τ e)(1− α)AE(Xb)

⇔ A2 e
β2Xb = (1− τ e)(1− α)AE(Xb)− (1− τk)

k

r

⇔ A2 =
(

(1− τ e)(1− α)AE(Xb)− (1− τk)
k

r

)

e−β2Xb

Therefore, we have the solution

D(X) =
(

D(Xb)− (1− τk)
k

r

)

eβ2(X−Xb) + (1− τk)
k

r
(A-5)

Management claim M(X)

For the management claim, we have

m = (1− τ e)γ c = (1− τk)κ− (1− τ e)γ(k + κ) + η

Therefore, M(X) has to satisfy the ODE

1

2
σ2M(xx) + µM(x) − rM + (1− τ e)γX + (1− τk)κ− (1− τ e)γ(k + κ) + η = 0

which has the solution

M(X) = A1 e
β1X+A2 e

β2X+
(1− τ e)γX + (1− τk)κ− (1− τ e)γ(k + κ) + η

r
+
µ(1− τ e)γ

r2

which we abbreviate to

M(X) = A1 e
β1X +A2 e

β2X + (1− τ e)γX̂ − k̂

by introducing k̂ ≡ (1−τe)γ(k+κ)−(1−τk)κ−η

r
.
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To determine the coefficients, for X À Xb we deduce that A1 = 0, since otherwise

the solution diverges.

On the other hand we have M(Xb) = 0, from which we can deduce A2

M(Xb) = A2 e
β2Xb + (1− τ e)γX̂b − k̂ = 0

⇔ A2 =
(

− (1− τ e)γX̂b + k̂
)

e−β2Xb

Therefore, we have the solution

M(X) =
(

− (1− τ e)γX̂b + k̂
)

eβ2(X−Xb) + (1− τ e)γX̂ − k̂ (A-6)

Tax claim T (X)

For the tax claim, we have

m = τ e c = (τk − τ e)(k + κ)

Therefore, T (X) has to satisfy the ODE

1

2
σ2T(xx) + µT(x) − rT + τ eγX + (τk − τ e)(k + κ) = 0

which has the solution

T (X) = A1 e
β1X +A2 e

β2X +
τeX + (τk − τ e)(k + κ)

r
+
µτe

r2

To determine the coefficients, for X À Xb we deduce that A1 = 0, since otherwise

the solution diverges.

On the other hand we have T (Xb) = τ e(1− α)AE(Xb), from which we can deduce A2

T (Xb) = A2 e
β2Xb +

τeX + (τk − τ e)(k + κ)

r
+
µτe

r2
= τ e(1− α)AE(Xb)

⇔ A2 e
β2Xb + τ eX̂b + (τ

k − τ e)
(k + κ)

r
= τ e(1− α)AE(Xb)

⇔ A2 =
(

τe(1− α)AE(Xb)− τ eX̂b − (τk − τ e)
(k + κ)

r

)

e−β2Xb

Therefore, we have the solution

T (X) =
(

T (Xb)− τ eX̂b − (τk − τ e)
(k + κ)

r

)

eβ2(X−Xb) +

τeX̂ + (τk − τ e)
(k + κ)

r
(A-7)

Bankruptcy claim BC(X)

For the bankruptcy claim, we have

m = 0 c = 0

Therefore, BC(X) has to satisfy the ODE

1

2
σ2BC(xx) + µBC(x) − rBC = 0
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which has the solution

BC(X) = A1 e
β1X +A2 e

β2X

To determine the coefficients, for X À Xb we deduce that A1 = 0, since otherwise

the solution diverges.

On the other hand we have BC(Xb) = αAE(Xb), from which we can deduce A2

BC(Xb) = A2 e
β2Xb = αAE(Xb)

⇔ A2 = (αAE(Xb))e
−β2Xb

Therefore, we have the solution

BC(X) = (αAE(Xb))e
β2(X−Xb) (A-8)

A.3 Optimal XB, Xb, Xbm

Differentiating the all equity claim (AE(X)) with respect to X gives

∂AE(X)

∂X
=
1− τ e

r
− (1− τ e)X̂B β2 e

β2(X−XB)

or at X = XB
1− τ e

r
− (1− τ e)X̂B β2

Setting this to zero
1− τ e

r
− (1− τ e)X̂B β2 = 0

and solving for X∗

B yields

X∗

B =
1

β2
− µ

r
(A-9)

Analogous, differentiating the equity claim (E(X)) with respect to X gives

∂E(X)

∂X
=
(1− τ e)(1− γ)

r
− (1− τ e)(1− γ)

(

X̂b −
(k + κ)

r

)

β2 e
β2(X−Xb)

At X = Xb and set to zero yields

(1− τ e)(1− γ)

r
− (1− τ e)(1− γ)

(

X̂b −
(k + κ)

r

)

β2 = 0

and finally

X∗

b =
1

β2
− µ

r
+ k + κ (A-10)

Finally, differentiating the management claim (M(X)) with respect to X yields

∂M(X)

∂X
=
(1− τ e)γ

r
+
(

− (1− τ e)γX̂bm + k̂
)

β2 e
β2(X−Xbm)
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At X = Xbm and set to zero yields

(1− τ e)γ

r
+
(

− (1− τ e)γX̂bm + k̂
)

β2 = 0

Solving for X∗

bm gives

X∗

bm =
1

β2
− µ

r
+

r

γ(1− τ e)
k̂

Expanding the last term and rearranging terms gives

X∗

bm =
1

β2
− µ

r
+ k +

γ(1− τ e)− (1− τk)

γ(1− τ e)
κ− 1

γ(1− τ e)
η (A-11)

A.4 Optimal coupon

For equity holders the optimal coupon (at time t) is found by solving the maximization

problem

max
k

(

D(Xt, k,X
∗

b (k)) + E(Xt, k,X
∗

b (k))
)

In principle, the solution is found by differentiating the sum of the equity and debt

claim with respect to k, setting it to zero and solving for k∗. Thereby, both claims make

use of the optimal X∗

b , which is X
∗

b =
1
β2
− µ

r
+ k + κ. Using the same abbreviations

as before (ref), we write the sum as

Σ(k) = t
(

X̂ − k + κ

r
− X̂B eβ2(X−XB−k−κ)

)

+
(

a1

(

X̂B +
k + κ

r
− X̂B eβ2(k+κ)

)

− a2 k
)

eβ2(X−XB−k−κ) + a2 k

with the additional definitions

t = (1− γ)(1− τ e) a1 = (1− α)(1− τ e)2 a2 =
1− τk

r

Differentiating Σ with respect to k yields

∂Σ

∂k
= t

(

− 1
r
+ β2 X̂B eβ2(X−XB−k−κ)

)

+
(

a1

(1

r
− β2 X̂B eβ2(k+κ)

)

− a2

)

eβ2(X−XB−k−κ)

−
(

a1

(

X̂B +
k + κ

r
− X̂B eβ2(k+κ)

)

− a2 k
)

β2 e
β2(X−XB−k−κ) + a2

Setting this to zero, there exists no closed-form solution for k∗, but it can be solved

numerically.

A.5 Equity volatility

To determine the annual percentage equity standard deviation, we need to calculate

√

Var[E(X1)]

E(X0)
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with

Var[E(X1)] = E0[E(X1)
2]− E0[E(X1)]

2

Thereby, the expectations have to be taken with respect to the probability law of X1,

which is given by the joint distribution of X, i.e. Brownian motion with drift, and the

first-passage time distribution, i.e.

Prob{Xt ∈ dx, inf{Xs; 0 < s ≤ t} ≥ Xb}

From general results of first-passage time distributions of Brownian motion with drift

(See e.g. Harrison (1985)), we know that

f(x, y, t) = Prob{Xt ∈ dx,Mt ≥ y}

=
1

σ
√
t

(

φ
(x− µt

σ
√
t

)

− e
2µy

σ2 φ
(x− 2y − µt

σ
√
t

))

where Xt is a general Brownian motion with drift µ and dispersion σ, Mt is defined as

inf{Xt; 0 < s ≤ t}, and X0 = 0. That is, f(x, y, t) is the joint density function for a

Brownian motion with drift starting at the origin and hitting the threshold y < 0.

In our context, y is given by Xb −X0, so that the expectation can be evaluated as

E0[E(X1)] =

∫

∞

Xb−X0

E(X +X0) f(X, (Xb −X0), 1) dX (A-12)

A.6 Probability of default

With the same reasoning as above, we can determine the probability that the firm hits

the bankruptcy threshold within a one-year horizon, which is given by the probability

Prob{inf{Xt; 0 < s ≤ t} ≤ Xb}.
From e.g. Harrison (1985), the first passage time distribution is given by

F (t) = Prob{Mt > y} = N
(−y + µt

σ
√
t

)

− e
2yµ

σ2 N
(y + µt

σ
√
t

)

where, again, y is in our context Xb − X0, and N(·) is the cumulative distribution
function of the standard normal distribution.

The one-year probability of default is then

PD1 = 1− F (1)

This is plotted in figure 11 for different values of the underlying cash flow volatility

(σ).

A.7 Kalman filter equation

The extension of the Kalman-Bucy filter can be found in Liptser & Shiryaev (2001),

p.392ff. They establish the follwing result.

Given the system

dXt = (a0(t) + a1(t)Xt + a2(t)Zt)dt+ b1dW
1
t

dZt = (A0(t) +A1(t)Xt +A2(t)Zt)dt+B1dW
2
t
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Figure 11: 1-year probability of default

where W 1
t and W

2
t are independent Wiener processes.

Then the optimal estimate ξt and the mean square error St satisfy the following equa-

tions

dξt = (a0(t) + a1(t)ξt + a2(t)Zt)dt+
A1(t)St

B1(t)2
(

dZt − (A0(t) +A1(t)ξt +A2(t)Zt)dt
)

dSt

dt
= 2a1(t)St + b1(t)

2 − A1(t)
2S2

t

B1(t)2

In our context, we have

a0(t) = µ, b1(t) = σ A1(t) = 1 B1(t) = δ

a1 = a2 = A0 = A2 = 0

From this it follows, that

dξt = µdt+ δ−2St (dZt − ξt dt) (A-13)

dSt

dt
= σ2 − δ−2S2

t (A-14)

For the initial condition S0 = δσ, it is obvious that dSt = 0 and St = δσ. In general,

the solution for St is derived as follows

dSt = (σ
2 − δ−2S2

t ) dt

⇔
( δ2

σ2δ2 − S2
t

)

dSt = dt

⇔ St = δσ
(S0 cosh

(

σt
δ

)

+ δσ sinh
(

σt
δ

)

δσ cosh
(

σt
δ

)

+ S0 sinh
(

σt
δ

)

)

(A-15)

where
(S0 cosh

(

σt
δ

)

+ δσ sinh
(

σt
δ

)

δσ cosh
(

σt
δ

)

+ S0 sinh
(

σt
δ

)

)

→ 1 as t→∞

A.8 Optimal Xb under incomplete information

By introducing the following definitions

t = (1− τ e)(1− γ) c1 =
( µ

r2
− k + κ

r

)

t c2 =
(

(

X̂b −
k + κ

r

)

e−β2Xb

)

t
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we write the equity claim based on the optimal estimate as

E(ξt) =
t

r
ξt + c1 − c2 e

β2ξt

Taking the expectation gives

E[E(ξt)] =
t

r
E[ξt] + c1 − c2 e

β2E[ξt]+
1
2
β2
2Var[ξt]

=
t

r
Xt + c1 − c2 e

β2Xt+
1
2
β2
2 St

Differentiating with respect to X at X = Xb gives

∂E[E(ξ)]

∂X
|X=Xb

=
t

r
− c2 β2 e

β2Xb+
1
2
β2
2 St

Setting the result to zero, re-substituting c2 and solving for Xb yields

1

r
−
(

(

X̂b −
k + κ

r

)

e−β2Xb

)

β2 e
β2Xb+

1
2
β2
2 St = 0

1

r
−
(

(Xb

r
+

µ

r2
− k + κ

r

)

)

β2 e
1
2
β2
2 St = 0

e−
1
2
β2
2 St

β2
=
(

Xb +
µ

r
− (k + κ)

)

Xb =
e−

1
2
β2
2 St

β2
− µ

r
+ (k + κ) (A-16)

and St = δσ.

A.9 Optimal coupon under incomplete information

The reasoning to determine the optimal coupon under incomplete information is anal-

ogous to appendix A.4. The maximization problem is given by

k∗ai = max
k

(

E[D(ξt, k,X
∗∗

b,ai(k)) + E(ξt, k,X
∗∗

b,ai(k))]
)

Using the same abbreviations as before, the sum can be written as

Σ(ξ, k) = t
(ξ

r
+

µ

r2
− k + κ

r
−
(

X̂ ′
b −

k

r

)

eβ2(ξ−X′
b−k)

)

+
(

a1

(

X̂ ′
b +

k

r
− X̂B eβ2(X

′
b+k−XB)

)

− a2 k
)

eβ2(ξ−X′
b−k) + a2 k

where X ′

b =
e
− 1

2
β2
2 δσ

β2
− µ

r
+ κ and X̂ ′

b =
X′
b

r
+ µ

r2 . Taking the expectation gives

E[Σ(ξ)] = t
(E[ξ]

r
+

µ

r2
− k + κ

r
−
(

X̂ ′
b −

k

r

)

eβ2((E[ξ]+ 1
2
β2Var[ξ])−X′

b−k)
)

+
(

a1

(

X̂ ′
b +

k

r
− X̂B eβ2(X

′
b+k−XB)

)

− a2 k
)

eβ2((E[ξ]+ 1
2
β2Var[ξ])−X′

b−k) + a2 k

= t
(Xt

r
+

µ

r2
− k + κ

r
−
(

X̂ ′
b −

k

r

)

eβ2((Xt+
1
2
β2St)−X′

b−k)
)

+
(

a1

(

X̂ ′
b +

k

r
− X̂B eβ2(X

′
b+k−XB)

)

− a2 k
)

eβ2((Xt+
1
2
β2St)−X′

b−k) + a2 k

52



Next, differentiating with respect to k yields

∂E[Σ]

∂k
= t

(

− 1
r
+
(

β2

(

X̂ ′
b −

k

r

)

+
1

r

)

eβ2((Xt+
1
2
β2St)−X′

b−k)
)

+
(

a1

(1

r
− β2 X̂B eβ2(X

′
b+k−XB)

)

− a2

)

eβ2((Xt+
1
2
β2St)−X′

b−k)

−
(

a1

(

X̂ ′
b +

k

r
− X̂B eβ2(X

′
b+k−XB)

)

− a2 k
)

β2 e
β2((Xt+

1
2
β2St)−X′

b−k) + a2

Again, setting this to zero, this cannot explicitly be solved for k, but numerical results

are available.

53


